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Summary 

An improved version of Woodward's chord plane aerodynamic panel 

method for subsonic and supersonic flow has been developed for cambered 

wings exhibiting edge-separated vortex flow, including those with leading- 

edge vortex flaps. The exact relation between leading-edge thrust and 

suction force in potential flow is derived. Instead of assuming the 

rotated suction force to be normal to wing surface at the leading edge, 

new orientation for the rotated suction force is determined through con- 

sideration of the momentum principle. The supersonic suction analogy 

method is improved by using an effective angle of attack defined through 

a semi-empirical method. Comparisons of predicted results with available 

data in subsonic and supersonic flow are presented. 



1. INTRODUCTION 

In references 1 and 2, an improved panel method was shown to be 

capable of predicting accurately the leading-edge and side-edge suction 

forces. In the method, a specific set of control point locations is 

obtained, based on a two-dimensional theory. All three-dimensional results 

presented for this method have been for non-cambered wings exhibiting 

edge-separated vortex flow. For highly swept cambered wings in subsonic 

compressible flow, a simplified method (as compared with that to be developed 

in this report) has been developed based on reference 3. That method 

uses the vortex-lattice method and suction analogy (VLPI-SA) and is 

applicable only to subsonic flow. Its application to analysis and design 

of slender cambered wings has been reported in references 4 and 5. 

It should be noted that in the existing suction analogy method, as 

exemplified by reference 3, the edge suction forces predicted for attached 

flow are rotated so that they are normal to the cambered wing surface along 

the leading and side edges to produce the vortex lift effect. This is 

a direct extension of Polhamus' suction analogy originally developed for 

a flat wing (reference 6). However. experimental evidence (references 7 

and 8) indicates that the leading-edge vortex on a slender wing tends to 

migrate inboard as the angle of attack is increased. This implies that its 

suction force orientation depends on the local camber and the angle of attack. 

and is not always normal to the camber surface at the leading edge, as it 

is assumed in the existing method of suction analogy. Therefore, the migrating 

behavior of leading-edge vortex can not he predicted without modification of 

the current concept of suction analogy. In addition, the exact relation 

between the predicted thrust forces and edge suction forces has not been 

derived for a cambered wing. 



The main purpose of this report is to present an improved method of 

suction analogy for slender cambered wings in subsonic and supersonic flow. 

The aforementioned deficiencies of the current method will be resolved, and 

comparison of experimental results with various existing methods for a 

variety of configurations will be given. 



2. LIST OF SYMBOLS 

A 

b 

C 

C 

cA 

C AV 

'd 

AcD 

cD i 

cD ii 

=R 

cL 

cL a 

C m 

C 
m 

C 
P 

'P(PM) 

AC 
P 

C 
S 

Ct 
C tip 

t f 
1, II, i: 

-c 
i 

S 

K 
P 

K v,lle 

K v,se 

aspect ratio 

span 

chord 

reference chord 

total axial force coefficient 

axial force coefficient due to leading-edge vortex 

sectional induced drag coefficient 

= 'D -('Dlc =. of non-cambered wings) 

L 
total near-field induced drag coefficient 

total far-field induced drag coefficient in attached flow 

sectional lift coefficient 

total lift coefficient 

lift-curve slope at small c1 

sectional pitching moment coefficient about Y-axis 

total pitching moment coefficient about Y-axis based on s 

pressure coefficient 

pressure coefficient calculated by Prandtl-Meyer theory 

lifting pressure coefficient 

sectional leading-edge suction coefficient 

sectional leading-edge thrust coefficient 

tip chord length 

unit vectors along X-, Y-, and Z-axes, respectively 

a unit vector normal to the wing leading edge (fig. 3) 

planform lift curve slope per radian at CI = 0" 

leading-edge suction coefficient at one radian angle of attack 

side-edge suction coefficient at one radian angle of attack 



Nc 

-+ 
nQ 

NS 

-f 
n m 

r 

+ 
r 

u, v, w 

V 

vz 

% 

x7 Y, = 

X2' Y2’ 22 

an a-correction factor for the supersonic flow (eq. 54) 

Mach number, or number of integration points 

a unit vector normal to the wing surface 

a normal vector 

number of chordwise panels 

a unit normal vector to the wing surface at the leading edge 

number of spanwise strips on right wing 

a unit vector normal to the freestream velocity vector 

streamwise distance of suction force center from the leading 
edge as defined in figure 7. Radial distance in figure 6. 

position vector 

local semi-span 

leading-edge suction force vector 

leading-edge thrust force vector 

a unit vector along the leading edge 

a unit vector along the freestream velocity vector 

induced velocity components along X-, Y-, and Z-axes, respectively 

velocity magnitude 

z- component of velocity in the vortex flow field (figure 7) 

circumferential velocity component in the vortex flow field 
(figure 7) 

rectangular coordinates with positive X-axis along axis of 
symmetry pointing downstream, positive Y-axis pointing to right, 
and positive Z-axis pointing upward 

a rectangular coordinate system obtained by rotating the XYZ 
system through an angle $I about X-axis 

a rectangular coordinate system obtained by translating the 

xlylzl 
system along Yl-axis 

a rectangular coordinate system obtained by rotating theXIYIZl 
system through an angle CI tw about Y -axis 
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XR (Y) 

Zc(X,Y> 

$X,Y) 

Z,(Y) 

a 

- 
a 

x-coordinate of the leading edge 

camber surface ordinate measured from X-Y plane 

camber surface ordinate measured from the mean chord plane 

z-coordinate of the leading edge measured from X-Y plane 

angle of attack 

average local angle of attack including twist and camber 

Au angle of attack correction in supersonic flow (eq. 53) 

atw b) 

6 

wing twist angle at y 

= sin-l(+) 

A, Al, A2, A3 percent of elemental panel chord by which a control point 
on a leading-edge panel is moved downstream. See equations 
(47) and (48) 

6 

6 
C 

Y 

deflection angle 

= tan -1 d; 
(2) 

2 
ratio of specific heats (=1.4 for air) 

yX 

x 

streamwise vortex density 

taper ratio 

/I leading-edge sweep angle 

dihedral angle 

= tan -’ (aZ,/ay2) 

control surface 

d;f 

9 

elemental area vector 

= tan-' (2) 
ax 

Subscripts 

f flap 

te, R leading edge 

P potential flow 

r root 

se side edge or tip chord 
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te 

vRe 

vse 

m 

trailing edge 

leading-edge vortex flow 

side-edge vortex flow 

freestream 



3. THEORETICAL DEVELOPMENT 

For the present purpose, the wing is assumed to be thin, and is cambered 

and twisted. The flow field satisfies the linear compressible governing 

equation which is solved through the use of pressure doublets (references 1 

and 2). To calculate the pressure distribution and other aerodynamic char- 

acteristics, the boundary condition of flow tangency must be satisfied. 

This condition and others will be developed in the following. 

3.1 Boundary Condition 

Assume that the wing surface (fig. 1) can be described by 

z = Z,(X,Y> (1) 

where z (x,y) is the ordinate of camber surface measured from the X-Y plane. 
C 

Introduce a function f such that 

f = z - zp,y> (2) 

Therefore, a unit normal vector on the wing surface can be defined as 

a “c * a “c + + ?f 
-ax=----j+i: 

n=-= ay 

l$fI aZc 2 a 

l+(c) ++2 

The boundary condition on the wing surface requires that the total 

velocity component normal to the surface should vanish. Hence, 

[(Vmcosa + u)I + vf + (Vmsina + w)Z]*Z = 0 

(3) 

(4) 

Using equation (3>, equation (4) can be expanded to give 

az 2Z 

[-Vmcosa $ - v c + Vmsina + w] I/ 
az 

ay 1+($)2+($)2zo (5) 

where u is assumed small in comparison with V cos a. co 

To simplify equation (5), it is assumed that the pressure doublets are 

distributed on a mean chord plane which is defined to be a non-twisted plane 

inclined with a dihedral angle (9) to the X-Y plane. Since conventionally 
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the airfoil camber is defined with respect to its chord line (denoted here 

as Zc(x2, y2) and shown on fig. 2) and the twist angle (otw) is measured 

relative to the mean chord plane, it is convenient to express the camber 

slopes, azc and az, 
dz,dz, 

ax ay 3 
in terms of dx 2’ dy2’ otw and 4 before equation (5) 

can be further simplified. This can be done through the following 

coordinate transformations. The original XYZ system is rotated about 

X-axis through an angle 4 (dihedral angle), 

system, and then is rotated through an angl 

the Yl axis to result in the X2Y2Z2 system 

resulting in the X Y Z 
111 

e atW (twist angle) about 

(fig. 1). In figure 1, the 

XiYiZi system is obtained from the XlYlZl system by a translation along 

the Yl axis, just as the X;Y;Z; system is related to the X Y Z 222 system. 

According to vector analysis, the results of such coordinate ro- 

tations can be obtained by a series of orthogonal transformations (p. 413, 

ref. 9). aZ, It is shown in appendix A that ax can be written as: 
- 

Simi 

dz 
-sin atw + 2 cos a 

dx2 
tw 

azc = .-_ ._-- . 
ax dz 

cos ~$3 (cos a 
c . 

tw + dx, sm atw) 

d? 
-sin c~ 

az tw 
+$ cos atw 

C 2 cos eax= .- . ..-- 

az, 

dTc 

cos atw + 5 s1n atw 

s given by 

d; 
C ~ cos!$ . 

.larly, --? i 
ay 

azc sin $ cos atW t ay2 

ay dz 
cos 9 cos a - c sin I$ 

tw dy2 

(6) 

(7) 

(8) 

To simply equation (5), note that the perturbed sidewash (v) is of the 

first order in magnitude. Following the thin wing theory, only first 

order terms will be retained in equation (5). Therefore, only the zero 
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az 

order in 2 as given by equation (8) will be retained. 
w 

In equation (8), 

d; 

atw and c are both regarded as small and of the first order in magnitude. 
dy2 d; 

Hence, if the denominator in equation (8) is expanded for small >, 
dy2 

it can 

be easily shown that: 

azc 
ay 2: tan 9 

Hence, equation (5) now becomes 

(9) 

W V azc --- v, v, tan 9 =: ax cos a - sin a (lOa> 

+- cos l$ - $ sin c$Z 
azc 

co co 
cos 4 ax cos a - co9 C$ sin a (lob) 

The left-hand side of equation (lob) represents the total induced velocity 

normal to the mean chord plane. Using this interpretation, equation (lob) 

is still applicable even if I$ = 90°, 
azc 

where cos 4 ax- will be replaced with 

equation (7). 

3.2 Relation between Leading-Edge Thrust and Suction 

After the lifting pressure distribution is calculated, the leading- 

edge thrust coefficient ct(in the negative x-direction) can be determined 

by using the pressure distribution as described in references (1) and (2). 

To calculate the suction coefficient (c,) from ct, the following steps 

are taken. 

Let Is be the unit vector along which the leading-edge suction force 

(121) acts in attached potential flow,? L is a unit vector along the leading 

edge and g II is the unit vector normal to the wing surface at the leading 

edge. They are indicated in figure 3. It follows that: 

f 1 =;: xz 
S II R (11) 

where g R is given by equation (3) evaluated at the leading edge. To find 

-+ 
5' note that along the leading edge, equation (1) can be written as 
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Z,(Y) = Zc(X,Y> , x = X.,(Y) (12) 

The position vector of any point along the leading edge can be written as 

2Y> = X,(Y)? + Y3 + Zk(Y)r: (13) 

The tangent vector is determined from 

d: dxR t 
dz 

--1++++~ 
dy - dy dy 

where 

% - = tan A 
dy 

dzll az az 
--cc 
dy ax 

tan A + c 
ay 

It follows that the unit tangent vector ;6 is given by 

where 
I 

,& = J 
dz R2 

1 + tan2A + (dy--) 

Substituting equations (3) and (17) into equation (11) results in 

T =;: ,; = 
S !L R 

(14) 

(15) 

(16) 

(17) 

(18) 

-azC -azC J 
a, 

ax ay 
1 1+c*j2 

dz 
tanA 1 -L 

d y 
azc dzll aZ az 

11 + fr - - 
ax dy 

+ tanA] + "t[-a$ + $ tan/\]] 

(19) 

Since the suction force z is in the direction of Ts in attached potential 

flow and the thrust $ is the component of d in the X-Z plane, it follows 

that 
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Thus, from equation (20), the sectional 

(c,) can be obtained from the sectional 

(c,) as follows: 

I 

az 
-5 tan*]]/cz)2 + (>)2 I$1 
ay 

(20) 

leading-edge suction coefficient 

leading-edge thrust coefficient 

J 2Z 

1+($)2+ (2)2 
C =c .--._=L ._.~_~.__ 

S t 
{ [s 2 + 112 + [- 2 + 2 tan*]2}1'2 

(21) 

where all quantities are evaluated at the leading edge, azc/ax, azc/ay are 

given in equations (6) and (8), and dz 
E is given in equation (16). 

dy 

3.3 Orientation of Rotated Suction Force 

In the method of suction analogy (reference 6) for a plane wing, the 

suction force predicted in the attached potential flow theory is rotated 

by 90' so that it is normal to the wing surface to simulate the vortex lift 

effect. If the same concept is used for a cambered wing, such as a delta 

wing with conically cambered leading edge (reference 7), then the rotated 

suction force, being normal to the wing surface at the leading edge, would 

produce an increasingly large thrust component on the mean chord plane as 

angles of attack are increased. However, experimental data for a conically 

cambered wing (reference 7), reproduced in figure 4, indicate that at high 

angles of attack the locations of minimum pressure values will move inboard 

onto the planar portion of the wing. Since the experimental leading-edge vor- 

tex-induced suction force can be obtained by summin, ff all vortex-induced suc- 

tion pressure forces, the center of this suction force will also move inboard. 

Similar situation occurs on a delta wing with leading-edge vortex flap (ref. 8). 

This is seen in figure 5 from an examination of the axial force coefficient 
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(C,) measured relative to the flat portion of the wing. The data show that 

CA stops increasing at about lb-17 degrees of angle of attack, indicating 

the leading-edge vortex has migrated over to the flat wing portion (refer- 

ence 8). Therefore, successful estimation of this suction force center is 

necessary for determining the appropriate orientation of the vortex force, 

as well as predicting the migrating behavior of the vortex. 

To be able to determine the location of this suction force center, a 

concept other than the suction analogy is needed. One possible way is to 

use the linear momentum principle of fluid mechanics. To get some idea on 

the flow field surrounding the leading-edge vortex, experimental results of 

Earnshaw (reference 10) are reproduced in figure 6. The velocity distribution 

was measured on a plane perpendicular to the freestream at a typical longi- 

tudinal station, Examining the circumferential velocity on a line a-a 

(fig. 61, its magnitude is approximately equal to the freestream velocity 

in a region from the vortex center to the leading edge, quadrant I, while 

it is less (about half of the freestream velocity in an average sense) 

inboard of the vortex center, quadrant III. The reason for the higher 

circumferential velocity outboard of the vortex center is probably due to 

the stronger effects of the vortex sheet and the "potential" flow. By 

"potential" flow, it is meant to be the non-separated flow component asso- 

ciated with the boundary condition being satisfied across the lifting surface. 

The results are quite similar in three other planes at 30, 50, and 70 percent 

of the root chord. It should be noted that the velocity shown in figure 6 

is the total circumferential velocity including both the potential and 

vortex flow effects. Since the circumferential velocity on line a-a inboard 

of the vortex center, quadrant III, can be assumed to be primarily due to 

the vortex effect, with the "potential" component being small, it is reason- 

able to assume that the vortex-induced normal velocity on line a-a is about 
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0.5 v,. 

From the aforementioned observation and assumption, a proposed flow 

model for the present Purpose is depicted in figure (7a), where Vz is taken 

as 0.5 V m- Since csc + oVW2, by the suction analogy, is the vortex force 

per unit span, a width of unity for a section A-A is taken as shown in 

figure (7b). Now, a control surface (a) is taken through the vortex center 

as shown in figure (7~). It is then assumed that the vortex force is equal 

to the vertical component of the force due to the momentum transfer through 

the control surface o. It follows that 

- csc $lm2 = 
/ 

oVs(? . df) 
u 

(22) 

From the assumption that Vs = iVm, the volume flow rate ? . d?)will be: I 

I G- dTl= +V, . 1 * r (23) 

Therefore, 

-c,c!+ P v2 = 
/ ( pvz - PV m z 

)? * d': 
u in out 

Vm*l.r) 

or, 

r=cc 
S 

(24) 

Equation (24) is used to locate the assumed center of the vortex force 

and hence, the associated local slope for the orientation of the suction 

force. If the estimated suction force center is downstream of trailing 

edge, the corresponding camber slope for the force orientation is assumed 

to be zero. 

Although the present results for the location of vortex force center 

can be used to,estimate the vortex contribution to pitching moment, unfor- 

tunately it is not possible to determine how the "potential" lifting pressure 

should be redistributed in order to estimate the "potential" contribution 

to pitching moment. Therefore, for the purpose of calculating pitching 
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moment, the vortex force will tentatively still be assumed to be at the 

leading edge, except that its orientation will be altered as discussed 

previously. 

3.4 Pressure Distribution and Total Forces and Pitching Moment 

The calculated longitudinal induced velocity (u) is assumed to be 

along the camber surface. Since in the linearized theory of both compres- 

sible and incompressible flow, the pressure coefficient (Cp) is related to 

u in the same expression: 

in the following the incompressible Bernoulli equation will be used to find 

a correction factor for high CI in C . 
P 

The magnitude of undisturbed flow velocity on the mean chord plane is 

"co- By resolving this velocity along and normal to the camber surface, the 

components V co cos(a + a tw - 6c) and Vm sin(a + ctw - "c) can be obtained, 

as indicated in figure 8 for CY tw = 0. It follows that the pressure coef- 

ficient (Ci) at any angles of attack can be obtained from: 

C’ = 1 - 1.. [(Vm cos(cl- AC> + u) 
2 

P "', 
+ (Vmsin(a" - &c> + w)~] 

a -2 cos(G - AC) u/v, = cp cos(G - AC> 

where 6 = tan 
C 

-1(d+k2) and % = o + CL tw' It follows that 

AC' 
P 

= cos(a - "c) AC 
P 

(26) 

(27) 

where AC 
P 

is predicted by satisfying the boundary condition equation (lOa). 

Physically, equation (27) implies that the predicted vortex strength from 

the attached potential flow theory is allowed to interact with the free 

stream velocity component tangent to the camber surface to produce the lifting 

pressure (ACA)(reference 6). 
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For a cambered wing with or without dihedral, additional lifting 

pressure will be generated from the interaction of a freestream component 

with the streamwise vortex density (y,), as shown in figure 9. Adding this 

component of lifting pressure to that given in equation (27) results in: 

AC" (28) 
P 

= cos(; - 6c)AC 
P 

- 2yx sina sin($ + $I~), ;j; = a + atW 

@Y 
= tan -+5 

2 
(29) 

where $I 
Y 

may be defined as "local dihedral" angle and may be different 

everywhere on the cambered wing. On the other hand, the geometric dihedral 

angle I$ is constant along y for a given cambered or noncambered wing panel. 

For a noncambered wing, 4 = 0 but $ may not be zero. Note that in the 
Y 

normal lifting condition, Yx is positive; because when viewed as a vector, 

it is pointing in the downstream (i.e., positive X-axis) direction. 

The lifting pressure (AC;) is acting normal to the local camber surface, 

i.e., in the z direction. This pressure force will be decomposed into ga 

and zm directions to determine the lift and drag components, respectively, 

where (see fig. 10) 

+ n =_ sin a I + cos a iI (30) 01 

z = cos a I + sin a 2 00 (31) 

+ 
Using equation (3) for z and then determining z . nco and g * ;m, it can 

be shown that 

1 

/ 

Xte a2 

IJ 

a2 

%,p = c 
AC"(L sina + cosa) 

P ax 
1+($)2+ ($)2dx 

Xlle 

1 
Xte 

'd,p = : I Ac;( 
azC 

- c cosa +sina ) 
I/ 

azc 2 azc 2 
1+ (ax> + (,y) dx 

XRe 

To find the pitching moment, the S-component of 

(32) 

(33) 
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(Ax? + A&) 

a2 a2 
$---“T+r: 

X 
ay _---_ 

1+(@2+(&)2 
-as;c 

is needed, where Ax and AZ are the moment arms of the pressure elements 

referenced to the coordinate system. It follows that 

c '1 Xte 
m,p= - ~2 AC" 

P (Ax + AZ 2,//m dx (34) 

The contribution of leading-edge vortex effect to the sectional aero- 

dynamic characteristics follows the same types of expressions given in 

equations (32)-(34). Hence, 

a2 C 
cc,vge = cs (ax sin a 

az 

Cd,vRe = Cs ( - T$ cos a + sin (36) 

- 2 (Axae 
azc 2 b 

c2 C = 
m,Vke (Tjy> + (,,I (37) 

az az 

where c 
ax 

and c are to be evaluated in accordance with the discussions 
ay 

of Section 3.3, regarding vortex movement. 

Finally, spanwise integration of sectional characteristics given in 

equations (32)-(34) and equations (35)-(37) will produce the total force 

and moment coefficients: 

C 2 
/ 

b/2 
L,p = S 

0 
cI1,p c dy 

b/2 
C D,p 'd,p c dy 

b/2 
C C 

m,p 
c2 dy 

b/2 
C 

2 
L,vRe = S o J ' f.,vlle c dy 

(38) 

(39) 

(40) 

(41) 
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C 
2 .b/2 

D,vlle = s / 'd ,vge c dy 
0 

C 2 
/ 

b/2 
=- 

m,vlle SiZ 
C 

m,vRe 
c2 dy 

0 

(42) 

(43) 

The above integration can be performed by applying the trapezoidal rule, 

as shown in reference 11. 

The side-edge contribution to the vortex-lift effect can be obtained 

by resolving the side-edge suction force, which is normal to the camber 

surface along the side edge, into " and ;', directions to determine lift 

and drag components, respectively. They have similar forms as those 

in equations (35)-(36). The pitching moment 

equation (37) closely. Thus, 

C _ ‘tip 
L,vse S I 

C s,se (2 sin c1 + cos 

contribution follows 

a> dx (44) 

C 
'tip =- 

D,vse S I 
C s,se cos a + sin o)/$mdx (45) 

C = 'tip 
- - 

C 
m,vse SC 

s, se (Axse + AZse ax 
%) ,/bw dx (46) 

where the integration is performed over the tip chord and c s se is the local 
, 

side-edge suction coefficient. The determination of side-edge suction 
az 

coefficient c s se is discussed in references 2 and 12. 
, 

The values of 6 

% and a~ in equations (44)-(46) are determined along the tip chord without 

assuming inboard movement of side-edge vortex. This is based on the 
a2 

assumption that on usual configurations c does not vary too much near the 
ay 

tip and cs se is usually much smaller than c along the leading edge so 
, S 

that the vortex center will be quite close to the side edge. 

In appendix B, analytical expressions to describe the geometry of 

leading-edge plane flaps and conical camber are derived. A numerical 

18 



method for calculating c from the prescribed camber ordinates is given 
ay2 

in appendix C. 
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4. NOMERICAL RESULTS AND DISCUSSIONS 

The computer program used in references (1) and (2) serves as a basis for 

further development to account for all features developed in Section 3. The 

three-dimensional effects (called sweep effect in references (1) and (2)) on 

choice of control-point locations have been re-examined. Since large geometric 

dihedral angles are now allowed in the program, the accuracy of calculation for 

configurations with large dihedral in both attached flow and separated flow 

must be assessed. The results of this re-examination and assessment, along 

with cambered wing data comparisons will be presented and discussed next. 

4.1 Three-Dimensional Effects on Control-Point Locations 

In the present constant pressure panel method, the control point on 

an elemental panel is chosen based on a two-dimensional consideration to 

match pressure values with those given by the exact thin airfoil theory. 

However, it is well known that for a wing with large sweep angles and/or 

small taper ratios, the outboard pressure distribution can be quite different 

from a two-dimensional shape. TO account for this effect, it was proposed 

in reference 2 to move downstream the control points of the leading-edge 

Panels by an additional amount in percent, A, of the elemental panel chord, 

where, 

forM< 1, Al = 0 

A2 = 0.35(A-60) 

for M > 1, 
Al 

= 3.0 

A2 = 0.35(/J-60) 

A = Al + A2 

for A 5 60' 

for A > 60' 

for !, < 60' 

for A > 60' 

(47a) 

(47b) 

(47c) 

(47d) 

(47.2) 

20 
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Equation (47e) appeared to be accurate for highly swept wings (A 2 70°) 

with any taper ratio examined in reference 2. However, for moderately swept 

wings (A< 70') with zero taper ratio, the results may not be accurate. This 

is illustrated in table l(a). The assessment of accuracy is based on the 

ratio of near-field to far-field induced drag coefficients, CD /C i Dii' 
in the 

attached flow solution (i.e. with 100% leading-edge thrust)(reference 13). 

This ratio should be as close to unity as possible. A value of less than 1.0 

for CD /C 
i Dii 

implies that the predicted leading-edge suction is too large. 

This appears to be true for all cases in table l(a), except case (2). 

Apparently, not only the taper ratio (see cases (1) and (3)), but also the 

aspect ratio (see cases (1) and (5)) will affect the accuracy of the attached 

flow solution. To improve the accuracy, the following empirical factor, 

A3 in percent, was used for all M's: 

A3 = 3.5 (l-x)3 & (48a) 

A = Al + greater of (A2, A3> (48b) 

The aspect-ratio factor in equation (48a) was chosen such that for A = 2.0, 

the aspect-ratio factor is one. The results are presented in table l(b) and 

appear to have significant improvement. Therefore, equation (48b) will be 

used in all following results. It should be noted that the adjustment 

represented by equation (48b) is applied to the outboard region of the wing 

only. For inboard regions, equation (47e) is still applicable. 

4.2 Effects of Dihedral Angles on Flat Wings 

Effects of large dihedral angles on wing aerodynamic characteristics 

have been experimentally investigated in reference 14 with V-tails. In 

figures 11(a) and 11(b), the predicted results for two non-cambered V-tails 

in attached flow are compared with data. These tails are called in reference 14 

Tail A and B and have aspect ratios of 5.55 and 3.70, respectively. Results 

by the quasi-vortex-lattice method (QVLM) (ref. 11) are also shown for the 

largest dihedral angles presented. The agreement between the present results 
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Table 1. Predicted Lift Factors and Induced Drag Ratio 

for Various Flat Configurations 

(a) Present Method with equation (47e) 

Geometry M K 
P % ,ge %,se 'DilCDiif Methods NcXNs 

__._ _____._-_-- _..-. _-_ _---_- _-- .--.-----. -. _ 

Delta 3.16613 3.88620 0. 0.684 Present 10 x 12 

(1) A=50°, A=O. OS 3.03177 3.18721 0. 1.087 ref. 11 7 x 12 
- __.___-__ -._-.____ ._,_ - __._ - _--- _- -- -1__ _ 

Delta 1.54912 2.95563 0. 1.0958 Present 10 x 12 

(2) A=74O, h=O. O- 1.43638 2.93962 0. 1.0815 ref. 11 7 x 12 
-. -_-__----- 

Delta 2.94631 3.31705 0.20858 0.803 Present 10 x 12 

(3) A=50°, X=0.1 " 2.86825 2.90379 0.20250 1.0423 ref. 11 7 x 12 
-. 

Delta 2.54488 3.89359 0. 0.7755 Present 10 x 14 

(4) A=63.43', h=O. Om7 2.39327 3.12126 0. 1.0814 ref. 11 10 x 14 
---___ 

Delta 4.90702 4.49280 0. 0.8661 Present 7 x 15 

(5) A=20°, x=0. OS 4.84672 4.28371 0. 1.0615 ref. 11 7 x 15 
I_____.._~ 

A= 45' 1.63405 1.74318 0.38427 0.9216 Present 7 x 15 

(6) A=2.0, X=0.5 '- 1.62226 1.68169 0.37001 1.0087 ref. 11 7 x 15 

(7) 

& 80" 65" 1.83039 3.57093 0. 0.8179 Present 9 x 14 0. 

same L.E. 
length in 
both regions 1.66340 3.03010 0. 1.1199 ref. 11 9 x 14 

-____---- -__ _-. 

:k 
Attached flow results. 
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Table 1. (Concluded) 

(b) Present Method with equation (48b) 

(1) 

(2) 

(3) 

(4) 

(5) 

(6) 

(7) 

Geometry M K 
P Kv ,Re Kv ,se 

CD lc 
k 

i Dii 
Methods 

NCXNS 
.- _.._..... _ ._..._.. ~-~~-.__-~-..-.---.-.-_ _ ~~ 

Delta 3.15358 3.19500 0. 1.135 Present 10 x 12 

A=50°, h=O. O- 3.03177 3.18721 0. 1.087 ref. 11 7 x 12 
.._-__- . . . -_- __-. -.-._-_..-. .- _-_ -- -_ ___.. _. -- - -_ .- ..- 

Delta 1.54912 2.95563 0. 1.096 Present 10 x 12 

/\=74O, A=O. O- 1.43638 2.93962 0. 1.0815 ref. 11 7 x 12 
_- _.___.- . .._.____.__._ ______. .--. ._ .----.--- .--- -- 

Delta 2.93790 2.82564 0.20593 1.113 Present 10 x 12 

A=50°, x=0.1 O- 2.86825 2.90379 0.2025 1.0423 ref. 11 7 x 12 
-._- _.___ _ ____.. ____.._.~ _._..__-._.- ---__---_- __ --- 

Delta 2.53932 3.24207 0. 1.056 Present 10 x 14 

A=63.43O, X=0. Oa7 2.39327 3.12126 0. 1.0814 ref. 11 10 x 14 
-- _-__. ____ _._ __ __._. - -_-.__. ._-- -... .- --_-- _ -. 

Delta 4.88981 4.14896 

/\=20°, x=0. O- 4.84672 4.28371 
---. ..-- -.---- _. -_-~-. _ _-_ -- . -- _-. -. 

h=45O 1.63218 1.68857 

A=2.0, A=0.5 '- 1.62226 1.68169 

-.. -.. 

0. 1.261 Present 7 x 15 

0. 1.0615 ref. 11 7 x 15 
.I_-_____ 

0.38310 1.008 Present 7 x 15 

0.37001 1.0087 ref. 11 7 x 15 -- - - -- _.... - _ - _ -..---- 
1.82592 3.10805 0. 1.055 Present 9 x 14 

Pi! 65" 

same L.E. 0. 

length in 
both regions 1.66340 3.03010 0. 1.1199 ref. 11 9 x 14 

_--. - -.- - 

>\ 
Attached flow results. 
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and those predicted by the QVLM is very good. The experimental data are 

all reasonably well predicted. 

A nonplanar configuration exhibiting edge-separated vortex flow is 

shown in figure 12. The predicted aerodynamic characteristics are compared 

with experimental data (ref. 15) in figure 13. Several points are of 

interest. 

(1) If the vortex lift is assumed to exist along all edges (i.e., full 

vortex lift curves), overall lift and drag are over-predicted. This has 

been verified in reference 15 with the conventional vortex-lattice method. 

(2) If the outboard panel (identified as section II in fig. 13) is 

assumed not to carry vortex lift, but the leading-edge suction is also lost, 

the predicted results in CL and CD agree well with experimental data. This 

assumption is consistent with experimental observation that the organized 

vortex flow is weak on the outboard panel. 

(3) The trend of variation due to tip dihedral is correctly predicted, i.e., 

increasing the tip dihedral reduces the C 
I, and C D' and makes C ?!I more positive. 

- 
dzc 4.3 Effect of dy on Leading-Edge Suction Coefficient for Cambered Wings 

2 
Among the cambered wings examined so far, the delta wing with conical 

camber tested in reference 

along the leading edge the 

d; 
- 

c and dz c, respectively. -- 
dx2 dy2 

7 appears to be the most critical case in that 

camber slopes amount to 0.3845 and -1.4402 for 

The camber geometry used in the present calcula- 

tion is derived in appendix B. From numerical calculation, it was found that 

a large negative value of 
d; 

c can greatly reduce the leading-edge suction 

dy2 
az az 

coefficient when equation (21) is directly used. (Note that 2, --!? and 
dz ay 

R in eq. (21) are related to a;~ and dZc in eqs. (6), (B), and (16) 
dy 

, res- 

dx2 dy2 

pectively). This is illustrated in figure 14. It is seen that without 
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dZc 
setting dy to zero in equation (21), 

3 
csc is too low and hence the lift is 

L 

underpredicted. This is perhaps because the boundary condition (eq. lob) 

is applied on the mean chord plane and the doublet is distributed also on 

the same plane, instead of the actual camber surface. Because of the large 
- 

magnitude of 
dz c near the leading edge for this conically cambered wing, 

dy2 

neglecting it will violate the small perturbation assumption in a small 

region near the leading edge. However, the present method is consistent 

with the usual practice in the thin wing theory. This means that dz c has 

dy2 
not been used in calculating the doublet strength. Therefore, in all calcula- 

tions to be presented below, 
d; 

c will be set to zero in equation (21). 

dy2 

4.4 Effect of Vortex Force Orientation 

Again, the conically cambered slender wing of reference 7 will be used 

to illustrate the effect of vortex force orientation. By setting r=O in 

equation (24), the vortex force will then be normal to the camber surface 

along the leading edge, an assumption being used in the existing methods. 

Figure 15 indicates that the present proposed theory (r = csc) can signifi- 

cantly improve the predicted results. Therefore, all following calculations 

will correspond to r = csc. 

As indicated in Section 3.3, the relation r = csc is mainly used to 

calculate the location for the vortex force orientation on a cambered wing. 

It is of interest to compare the location of vortex force centroid predicted 

by the present method with the leading-edge vortex location given by other 

methods. Figure 16 presents a comparison with the results by Brown and Michael 

in reference 16. The present method predicts the vortex force centroids 

slightly outboard of the vortex location given by reference 16. The model 

of Brown and Michael has further been employed in reference 17 where theoretical 
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results were compared with data for different planforms. The comparison 

indicated that the vortex force centroid shown in figure 16 by the present 

method and the vortex location by ref. 16 is too much outboard of the ex- 

perimental vortex location. The same conclusion is true when compared with 

Smith's calculation (ref. 18). It should be noted that one additional 

effect included in reference 18, but not modelled in references 16 and 17, 

is the leading-edge free vortex sheet which is to increase the loading near 

the leading edge. This implies that the vortex force centroid will not 

coincide with the vortex location, but will be outboard of it. Therefore, 

the present method should be used only to find the vortex force centroid, 

but not the concentrated vortex-core location. 

4.5 Cambered Wings in Subsonic Flow 

Several cambered slender wings have been used to correlate the pre- 

dicted results with data. The results for the aforementioned conically 

cambered delta wing are compared with those by the vortex lattice method, 

VLM-SA, (ref. 3) in figure 17. The present results appear to agree better 

with data than those by VLM-SA in ACD and CL. However, the difference in 

the predicted CL is smaller than expected, despite of the fact that in 

VLM-SA the vortex force is assumed to be normal to the camber surface at 

the leading edge (see figure 15 for the effect). One possible reason is 

that in reference 3 az 
, 2 is taken to be zero in the denominator of equations 

ay 
(32) through (37), resulting in increased C 

L and AC,. The predicted ACD 

at high angles of attack by the present method are slightly too low. Whether 

this is due to additional separation at the juncture of conical camber and 

the plane wing section is not known. On the other hand, the present pitching 

moment is too negative at high lift coefficient. 

A highly cambered wing was tested by Squire and reported in reference 19. 

This wing has camber slopes, az 
2 and 3, along the leading edge as high as 
ax ay 
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0.45 and -2.1, respectively. From the comparison made in figure 18, CL, 

AC 
D 

and Cm are all well predicted by both the present method and VLM-SA. 

The jump in experimental CL at a=20° was explained in reference 19 to be 

due to merging of two vortices - one being the leading edge vortex and 

the other one being inboard vortex due to camber shoulder separation. 

Recently, the use of leading-edge vortex flaps to increase the lift- 

drag ratio under maneuvering conditions has been of great interest. Some 

low speed results for a 74'-delta wing have been reported in reference 8. 

The geometry of the configuration used in the present method is shown in 

figure 19, where the dashed lines form the altered boundaries to define the 

planform in the present and VLM-SA computer programs. The undeflected 

trailing-edge flap on the test model is ignored for simplicity. The results 

are presented in figure 20. Note that all coefficients are based on total 

planform area excluding the flap. It is seen that the predicted results 

agree well with experimental data, as do those for the VLM-SA method. Note 

that the ability of the present method to predict the vortex force orienta- 

tion makes it possible to estimate when the leading-edge vortex will move 

onto the plane wing. As shown in figure 21, the magnitude of vortex axial 

force coefficient (C,) starts to drop at u=16O, implying that for CI > 16' 

the vortex will migrate onto the wing. In reference 8, the CI at which this 

migration occurred was estimated to be 17O. The present results are there- 

fore seen to be in good agreement with this reference. 

Another configuration with full-span leading-edge flap was tested in 

1958 at subsonic and supersonic speeds (ref. 20). The wing-body combination 

consists of a delta wing of aspect ratio 2.0 and NACA 0003-63 airfoil in the 

streamwise direction. The test results at M=O.7 are compared in figure 22 

with the predicted values for a configuration with the leading-edge flap 
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deflected down by 15 degrees normal to the hinge line. It is seen that the 

theoretical results by the present theory and VLM-SA agree quite well with 

the data. It should be noted that the fuselage in reference 20 is not 

modelled in either the present theory or the VLM-SA. 

Two highly cambered wings designed by the method of vortex-lattice 

and suction analogy have been tested in subsonic flow. The results are 

presented in figures 23 and 24 together with theoretical prediction. It is 

seen from figure 23 that the present method offers significant improvement 

over VLM-SA in drag prediction. Presumably, this is due to the more accurate 

vortex force orientation calculated in the present method. For the cranked 

cambered wing shown in figure 24, the present predicted drag level is slightly 

too high at low CL. The reason is not known. For CL and Cm, the present 

results are in reasonably good agreement with data, except that the C L for 

the cranked cambered wing is underpredicted at moderate angles of attack. 

These results are not, in general, any better than those of the VLM-SA with 

the exception of the C,, prediction. 

4.6 Wings in Supersonic Flow 

Non-Cambered Wings 

The method of suction analogy was first applied to delta wings in super- 

sonic flow by Polhamus (ref. 22). If the concept is directly used on a delta 

wing of A = 413, results shown in figures 25 and 26 can be obtained. Note 

that the dashed curves denoted as the present theory without correction are 

the results by direct application of Polhamus' concept. So are the curves 

marked as original suction analogy. It is seen that the theory overpredicts 

CL and underpredicts AC, slightly. Examination of the test cases in reference 

22 indicates that the same trend persists on a delta wing of A = 1.0 presented 

in that reference. Although the attached flow theory (with 100% leading-edge 
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suction) tends to predict CL at low a rather well, the drag is underpre- 

dieted. In addition, the test model used in reference 23 has sharp edges 

so that.the concept of partial leading-edge suction investigated in 

reference 24 is not applicable. In an effort to improve the situation, 

it is helpful to study the flow field on a 65'-delta wing reported in 

reference 25. It was indicated in reference 25 that in supersonic flow 

the leading-edge separation starts at a higher angle of attack than that 

in subsonic flow on the same wing. The vortex flow region is diminished 

quickly as the Mach number is increased at a given angle of attack. In 

addition, the separated flow characteristics on a wing with small round 

leading edge (RAE 101 section) are quite similar to those with sharp 

leading edge (biconvex section). In fact, the longitudinal aerodynamic 

characteristics with fixed transition are practically the same for both 

airfoil sections. Since there is no doubt about the existence of separated 

vortex flow on slender wings in supersonic flow, the discrepancy between 

the results by current suction analogy and data must be nonlinear effect 

not accounted for in the linear potential flow theory. Of course, this 

conclusion is based on the assumption that the current suction analogy is 

still applicable in supersonic flow. 

To find a correction to the linear potential flow theory, it is noted 

that the flow expansion on the suction side of the wing makes the vortex 

flow separation possible. Therefore, it is of interest to compare the 

suction pressure predicted by the linear theory with that given by the Prandtl- 

Meyer theory. In the two-dimensional case, it is shown in reference 26 (p. 386) 

that the linear theory predicts always a higher suction pressure. For a flat 

plate at an angle of attack a, the upper surface pressure coefficient (Cp) 

given by the linear theory is (ref. 26, p. 386) 

C 2a =- 
P @-T 

(49) 
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On the other hand, the Prandtl-Meyer theory shows that (ref. 26, p. 383) 

C 
p(PM) = + 

YMm 
(50) 

where S = sin-'*) and 03 B = sin-'&) which must be found from (ref. 26, p. 377) 
co 

-u + S -B tan-' (m tan B) = Bm -E tan-' (E tan Bm) (51) 

To make C 
P 

= Cp(PM), a correction (a') to a in equation (49) must be made 

such that 

2 (a + a’) = 
Jy cp(pM) 

or, 

a’ = c 
e(FM) (52) 

Equation (52) must be further modified based on the following two consider- 

ations. Firstly, equation (52) has been obtained by considering the upper 

surface pressure coefficient only, not the lifting pressure (Ace). Assuming 

that the lower surface,compression does not affect the upper surface vortex 

flow so that the linear theory prediction does not require modification, 

then the corresponding angle of attack correction to AC 
P' 

Aa, will be given 

4 (a + Aa) 
f$y =j$y+yg-!$ 

or, 

Secondly, experimental evidence (ref. 25) indicated that as the Mach number 

is increased at a given a, the vortex flow region will quickly diminish faster 

than predicted by reference 22. This means that a' should decrease 
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in magnitude as M, is increased. Presumably this is due to the three- 

dimensional effect, effect of conical shock above the vortex flow (ref. 25), 

etc. One simple way to account for these effects is to assume that CL' varies 

inversely with Mz - 
J 

1, in much the same way as C p does (see eq. 49). A 

Mach number of 1.4 will be chosen as a reference (see below), because it 

is usually regarded as the lower bound in Mach number for the linear super- 

sonic theory to be applicable. Combining the above considerations, the 

a- correction, Aa, can now be written as 

Aa = Ka (-a - 
e(PM)) 

where 

K =+ , 
a M,<- 1.4 

(53) 

(54b) 

Equation (53) is illustrated in figure 27 with and without equation (54b) 

for a = 10 deg. The magnitude of Aa for different M, and a by equations 

(53), (54a) and (54b) is indicated in figure 28. 

The results of applying Aa correction to the calculation for a delta 

wing of aspect ratio 413 have also been presented in figures 25 and 26 for 

Ma3 = 1.4 and 1.8. It is seen that a significant improvement in prediction 

is apparent. 

In reference 22, the results by the original suction analogy method 

were compared with data from reference 27 for a delta wing of aspect 

ratio of 1.0 at M = 1.97. m This comparison is reproduced in figure 29. 

It is seen that the lift is overpredicted and the drag at a given lift 

is underpredicted by the original method. On the other hand, the present 

modified method predicts both the lift and the drag quite well. 
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A slightly cropped delta wing of 76O sweep angle has been tested 

in supersonic flow with results reported in reference 28. The plane 

wing had 4-percent-thick circular arc airfoils. The test data are compared 

with the theoretical prediction in figure 30. In the present theory, if 

the side-edge (SE) vortex lift effect is included, the lift will be slightly 

overpredicted (about 4% at a = 20 deg.) and the drag slightly underpredicted. 

The pitching moment is slightly more negative at high CL than the data show. 

On the other hand, if the side-edge vortex lift effect is ignored, good 

agreement between theory and data can be achieved. Whether this is 

true for wings with higher taper ratios is not known, since most available 

data were obtained on wings with zero or rather small taper ratios. The 

results by the Middleton-Carlson linear theory are also shown in figure 30. 

It underpredicts the lift at high a's and overpredicts the drag slightly. 

Finally, the results for the cropped plane delta wing of 65'- sweep 

angle reported in reference 25 are presented in figure 31. The fuselage 

is not modelled in the present program. It is seen that the theory with 

full vortex effect overpredicts CL by about 10% at a = 10 deg. Excluding 

the side-edge vortex lift effect does not improve too much the agreement. 

One possible reason for the discrepancy is the presence of a fuselage 

which has a diameter-to-wing span ratio of 0.2083, and has a forward 

portion of 0.75b ahead of wing root chord. Squire (ref. 25) observed 

that the fuselage tends to increase the angle of attack at which the 

vortex flow becomes significant. The main cause is the conical shock from 

the fore body. From figure 31, it is shown that the present theory with 

the potential flow component only (0% leading-edge suction) seems to 

predict the results rather well. The good agreement in this case may 

be fortuitous. 
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Further investigation of the fore body effect in supersonic flow is needed. 

Cambered Wings 

For cambered wings, equation (53) should be modified by using some 

average local a: 

Aa = Ka (- a _ J2.Z cp(pM)> 
2 

(55) 

where K a is still given by equations (54). In the following calculation, 

& is assumed to be the arithmetic mean of local a including twist and 

camber at all control points. 

Several configurations of leading-edge flaps have been tested at M, = 1.4 

and 1.8 and reported in reference 23. Results for deflection angles of 

36.45 degrees and 60 degrees are presented in figures 32 and 33. It is 

seen that the lift is well predicted in all cases, in particular at M, = 1.8. 

At a transonic Mach number of 1.4, the predicted CL is slightly higher, 

with discrepancy being 8% or less. However, in all cases the drag is 

underpredicted for positive CL and overpredicted for negative C L' The 

same situation has been demonstrated in reference 30 (fig. 4C of that 

reference) for a configuration with leading-edge flaps deflected 20 deg. 

Possible reasons for this are flap hinge separation at positive.CL as 

indicated by the author in reference 23 and the nonlinear effect on wave 

drag. At negative lift, the drag data fall between the results for 

attached flow (100% leading-edge suction) and vortex flow. Whether 

this implies partial leading-edge vortex flow on the lower surface is 

not known. 

To avoid the effect of possible leading-edge flap separation, a 

smoothly cambered wing would be more suitable to test the theory. Data of 

such a wing are available in reference 28 for a wing designed to cruise at 

M m = 3.5 and design CL of 0.1. The results are presented in figure 34. 
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Again, the present theory without the side-edge vortex lift effect appears 

to be more accurate for C L 
and AC 

D' 
However, it gives less accurate 

results for C m at high CL. 
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CONCLUDING REMARKS 

An aerodynamic panel program has been developed for cambered wings 

exhibiting edge-separated vortex flow at subsonic and supersonic speeds. 

Semi-empirical but simple methods have been developed to determine the 

appropriate position and hence orientation of vortex force on cambered 

wings, as well as to improve the prediction in supersonic flow. Com- 

parison with available data indicates that (1) the program is accurate in 

predicting subsonic aerodynamic characteristics of highly cambered wings 

with vortex separation effect. The improvement in drag prediction over 

currently available methods can be significant. (2) The program is also 

accurate in predicting supersonic aerodynamic characteristics of slender 

wings with vortex separation. This has been achieved by employing an effec- 

tive angle of attack in the suction analogy method. 

In view of the improvement made in the present prediction method and 

possible further refinement, it would be of interest to: 

(1) use the program to design a sunersonic wing so as to make 

efficient use of the vortex flow; 

(2) examine the fuselage effect on wing vortex flow more closely; 

(3) reexamine the drag associated with using leading-edge flaps in 

supersonic flow; 

and (4) make additional verification studies in which the significance 

of side-edge vortex lift in supersonic flow can be investigated. 
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APPENDIX A 
az az 

Derivation of Expressions for Camber Slopes, ;;;;' and -' 
ay 

As indicated in Section 3, the camber slopes , 3 and 
az 

2, based 
ax 9 

on the original XYZ system (see fig. 1) can be expressed in terms of 

camber slopes based on the local chord line. To achieve this, two rota- 

tions of the coordinate system are needed. The first is about the 

original X-axis through a dihedral angle (Ip), and the second is about 

the new Y-axis (Yl-axis) through a local twist angle (a 
tw 

). The resulting 

expressions for a2 c and az c are derived below. 
ax ay 

azC A.1 Calculation of ax 

Consider a vector with components (dx, dy, dzc) tangent to the camber 

surface at some point, P. This vector has the component ;Q in the X-Z plane 

(fig. 2). According to vector analysis, the vector (dx, dy, dzc) based 

on theXYZ system can be expressed in theX;Y;Z; system (dx2, dy2, dzc) 

through the following relation (p. 413, reference 9): 

tw sina dx 
tw 

sin+ 

= cos Q 

-sinatw COSI$ ] 

sin 4 dy (A.11 

tw 
- sin+ cosa 

tw coslp cosa dz 
tw 

) 

C 

It follows from equation (A.l) that 

dx2 
= dx cos atw + dy sin atw sin $I - dzc sin atw cos 0 

dy2 = dy cos I$ + dzc sin $ 

diC = dx sin atw - dy sin $I cos atw + dzc cos 9 cos atw 

(A. 2) 

(A.3) 

(A.4) 
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azC 
d; 

To calculate ax in terms of 2 
2 

(A.4). Hence, 

y=constant' 
set dy = 0 in equations (A.2)- 

dx2 = dx cos atw - dzc sin cttw cos 4 (A.5) 

dZc = dx sin atw + dzc cos 4 cos atw (A. 6) 

Equations (A.5) and (A.6) can be solved for dx and dzc through Cramer's rule 

to give: 

dzc = 
-dx2 sin atW + die cos atw 

(A.7) 
cos $ 

dx = dx2 cos atw + dz sin atW 
C 

(A.8) 

az 

To find -$, equation (A.7) is divided through by equation (A.8) to yield: 

or, 

+ dz 
azC -sln atw dx 

c cos atw 

cos $I -jy = 2 

cos a 
+ d'? c sin c1 

tw dx 
tw 

7 
L 

a2 d; 
For $I = 0, let 2 = tan 0 and 2 = tan 6 . Both 0 and 6 are 

C 
2 

C 

indicated in figure 2. Equation (A.lO) then becomes 

-slnatw 
cosd 

tan 0 = 
C 

+ sinsc cosotw sin (15~ - atw) 

cosa cosd 
tw 

c + sinsc sinatw = cos (csc - atw> 

= tan (AC - atw) 

Hence, 

8 = 6c - atw 

(A.91 

(A.lO) 

The result in equation (A.ll) is seen to be correct from a geometric point 

of view, because in figure 2, f3 is negative and 6c is positive. 
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A.2 Calculation of c 
azaY d; 

To calculate -$ in terms of -$, set dx = 0 in equations (A-2)-(A.4). 
2 

It follows that: 

dy2 = dy cos I$ + dzc sin 4 (A.12) 

di 
C 

= -dy sin 4 cos atw + dzc cos I$ cos atw (A.13) 

Solving equations (A.12) and (A.13) for dzc and dy through Cramer's rule, 

it is obtained that 

dy2 sin $ cos a 
dzc = tw + dGc cos + 

cos atw 

dy2 cos 4 cosatw - dGc sin 0 
dy = 

cos atw 

Hence, d; 

azC 
sin $ cos atw +c cos 0 

-= dy2 
0 dZ 

cos $ cos a - c sin I$ 
tw dy 2 

(A.14) 
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APPENDIX B 

Geometry of Leading-Edge Plane Flaps and Conical Camber 

In this report, leading-edge plane flaps and conical camber have been 

used extensively to demonstrate the applications of the present program. 

These two kinds of aerodynamic devices have been represented analytically 

in the program. For the convenience of readers, these analytical expressions 

are developed in the following.' 

B.l. Leading-Edge Plane Flaps 

A leading-edge plane flap, as shown in figure B-1, is defined by 

four corner points, l-2-3-4. In applications, points 1 and 2, or points 

3 and 4, may coincide. Therefore, to define a normal vector to the plane, 

it is convenient to use the two vectors $ 1 and ?2 given by: 

f, = (x4 - x1)? + (y4 - Yllf + (24 - .,)r: (B.1) 

?2 = (x3 - x2)X + (y3 - Y213 + (z3 - .,s (B.2) 

A normal vector (8) to the plane flap can now be constructed by using ?, and 3,: 

t f 
1 

73 = +1 x $2 = 
J il 

x4 - x1 Y4 - Yl 24 - z1 

1 x3 - x2 Y3 - Y2 23 - 22 

= z [(Y4 - y,> (z3 - z2) - (Y, - Y,) (s4 - Zl)] 

+T [‘x 3 - x2> (z4 - Zl> - (x4 - Xl> (z3 - z2)] 

+it [(x4 - Xl> (Y3 - Y,) - (x3 - x2> (Y4 - YJ 

= Nx? + WY; + NZT: (B-3) 

It follows that if the equation of a plane containing the flap is written as 

ax + by + cz + d = 0 (B-4) 
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'Y3'Z3) 

Figure B. 1 Geometry of a Leading-Edge Plane Flap 

(9.6,O.) 

0.805a 

Z’ 

A 

L1 

(a> 
(1.4, 0.: 

Figure B. 2 Geometry of a Delta Wing with Conical Camber 

42 



the constants, a, b, and c can be chosen as follows: 

a=N 
X’ 

b=N 
Y' 

c=N 
Z 

03.5) 

as a; 

The camber slopes, 2 and L, needed in determining the aerodynamic 
w 

characteristics can then be obtained by differentiating equation (B.4) after 

z is replaced by zc: 

azc a NX 
j-g- =-;c-" 

aYic b -3 
%- =--;= NZ 

0.6) 

(B-7) 

To determine whether a point P(x, y, z) (such as a control point) is 

within the boundary of the plane formed by the points l-2-3-4, the two 

vectors 61 and 6, formed by points 1-P and 1-2, respectively, can be 

used. When projected onto the X-Y plane, these two vectors will be 

denoted by 6; and 6;. It follows that 

6; x 6; = 
+ 1 f 

J rt 

x-x 1 Y - Yl 0 

x2 - x1 Y2 - Y 0 

= rt [c x - Xl> (Y, - Y,) - (x2 - Xl) (Y - Yl)] (B.8) 

It follows that if 6; x 6; > 0, the point P is on the flap-side of the line 

connecting points 1 and 2. In case 6; is a zero vector (i.e., points 1 and 

2 coincide), comparison of y-coordinates of points 1 and P will be sufficient 

to determine whether P is inboard or outboard of point 1. Similarly, the 

two vectors 3' 
1 

and ?; formed by points 4-P and 4-3,respectively,and projected 

onto the X-Y plane can be used to determine the location of P relative to 

the boundary of the line 4-3: 
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z J r: 

$1 x $1 = 
12 x-x 4 Y - Y4 0 

x3 - x4 y3 - y4 
0 

= d[(x - x4> (Y3 - Y4) - (x3 - x4> (Y - Y4) 1 (B-9) 

If F; x +o, the point P is again on the flap-side of the line connecting 

points 4 and 3. Again, if points 4 and 3 coincide, the y-coordinates of 

point P and 4 may be compared to determine the location of P relative point 4. 

B.2 Conical Camber 

Leading-edge plane flaps, described in Section B-1, are simple devices 

frequently used to simulate aerodynamically the effect of more complicated 

camber shapes, such as conical camber. However, many test models have been 

incorporated with leading-edge conical camber of different sizes. To illus- 

trate the derivation of analytical expressions describing the geometry of 

such conical cambers, the one used in reference 7 on a delta wing will be 

used as an example. 

As shown in figure B.2, Q,Q, is a circular arc with circle center at 

0'. Since the point Q, is on the circular arc, it follows that (see fig. 

B.2(a)) 

(0.195a)2 + zi2 = R2 (B.lO) 

0.102a + z; = R (B.ll) 

Substituting equation (B.ll) into equation (B.lO) results in 

(0.195a)2 + (R-0.102a)2 = R2 

which can be solved for R: 

R = 0.237397 a (B.12) 

Based on the planform coordinate system as shown in figure B.2(b), the 

center of circle 0' is at (x, 7, -R), where 
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I 

7 = 0.231303 (1.6+x) (B.13) 

R = 0.237397 a = 0.237397 x 3 (1.6+x) . 

= 0.06821207 (1.6+x) (B.14) 

Hence, the equation of circular arc based on the planform coordinate system 

becomes 

(y - y)2 + (z + R)2 = R2 , y ) 7 , z< 0 (B.15) 

a2 
To find 2, replace z in equation (B-15) by zc and differentiate the 

equation with respect to x. It is obtained that 

2(y - 7) (- $) + 2'ic azc + R) (~+g) = 2Rg 

but 

ay = 0 231303 
ax - 

aR = 0 06821207 
ax - 

Hence, 

a: 
c=_ 1 
ax zc + R [ 0.231303 (y - ;) - 0.068212 (icj, y 2 ; 

where z c is given by 

- =-R+jm, y'y z 
C 

To find >,equation (B.15) is differentiated with respect to y: 
ay 

aTi 
cc- Y-; 
ay 

, 
!i +R 

Y’i 

C 

(B.16) 

(B.17) 

(B.18) 
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APPENDIX C 

A Numerical Method for Calculating c 
ay 

When a general camber surface is described by a finite number of ordinates 
aTi 

at some spanwise stations, 
aGc 

a numerical method is needed to calculate $ and 

- at control points and integration (pressure) points. 
ay 

In the present 
aZc 

erogram,-g-- is calculated through cubic spline interpolation. In the 

fgllowing, a trigonometric interpolation formula will be used to calculate 

azC - 
ay - 

The method used is similar to that used in determining the distribution 

of streamwise vortex density (ref. 12). 

It is well-known that if at a given point, slopes in two directions are 

known, then the slope in other directions can be determined in terms of them. 

Referring to figure C.l, assume that the slopes in the X- and Y' directions 

are known. To calculate the slope in the y-direction, the following 

coordinate transformation formulas are needed. 

. 
X = x cos A - y sin A 

Y' = x sin A + y cos A 

If zc (X,Y> is the dimensional camber function, then 

(C.1) 

(C.2) 

azC 
az 

- -sin A T + cos A --+ 
ay 

az azc ax, azc 
ayl- 

az a2 
c=- 
ax axfT+ay’ ax 

cos A $ + sin A 4 
ay 

(C.3) 

(C.4) 

a2 

Substituting 2 obtained from equation (C.4) into equation (C.3) results in: 

az az 
2 = -tan ,, 2 + 1 azC 

ay ax (C.5) 

Equation (C.5) represents the basic formula used in the present method. To 
az 

determine $,zc-ordinates in the y'-direction are used. Although cubic 
az 

spline interpolation can be used to find ---$ it was found to be more 
ay 

accurate to use the trigonometric interpolation formula (ref. 12): 
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Figure C. 1 Coordinate Transformation. 

Figure C. 2 Arrow Wing used in the Example. 
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az dz 
c=--s 2 
ay; dei b' sin fIi CC.61 

2 = g ZCk (-l)k+i cos ;$_e:os 

cos 8 

+lz ~ 
i 

i 
e 

i 
2 ci sin 8. 

1 

(-$ sin 8 il 
i - cos ei - 2 'CM 

(-l)M+i 
sin e 

i 
i + cos ei 

where: 

(C-7) 

Y’ +1- cos e) (C-8) 

ei=i$ , ek=F 

i = l,..,M-1. 

(C.9) 

where the prime on the summation sign implies that the term with k = i is to 

be omitted. In equation (C.7), zc and z are the camber ordinates at 
0 CM 

inboard and outboard endpoints, respectively, and M is the total number of 

points used in the interpolation. 

To indicate the accuracy of the interpolation method, an arrow wing 

with the following camber surface is chosen (See figure C.2): 

- - 
zc (ii, ;) = (0.14 - 0.22;)x3 + (-0.1835 + 0.165~)~~ -I- 0.0785; 

+ 0.015 (5 - 1.0) (C.10) 

ji = y/b/2, x = (x - x Re (3)/c(Y), zc = qcm (C.11) 

It follows that 

az az 
cc--- C2j 

ay a7 ay 

= 25 c(;) Gc (3 
ay ll ~ ac G-7) a7 + q;, y] (C.12) 
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For the.configuration shown in figure C.2, 

X = (x - y tan A ,)/c(Y) = x - 3y 
cr (1 - 7) 

where: 

c(Y) = cr (1 - y> 

ace = -c = -1 95 
a7 . r 

From equation (C.lO), 

A = -0.22 g + 0.165X 2 
ar 

+ 0.015 + C (0.42 - 0.667)x 2 

+ (-0.367 + 0.33;); + 0.0785] s 

Using equation (C.13), the derivative -% can be obtained: 
ay 

Substituting equations (C.14)-(C.17) into (C.12) results in 

azC -= 
ay 

5 p.95 (1 - y> 2 - 1.95 ;,(;)I 

with 

azC -0.22x 3 + 0.165% 2 -= 
a7 

+ o 015 + _(_x - 3) (0.42 - 0.66;) ; 2 
1.95 (1 - jY)L 

+ KY- 3) (-0.367 + 0.33;) ; + o 0785 x-3 
1.95 (1 - F)L 1.95 (1 - 7)2 

(C.13) 

(C.14) 

(C.15) 

(C.16) 

(C.17) 

(C.18) 

(C.19) 

az 

Equations (C.lO), (C.18) and (C.19) describe the exact distribution of c 
ay 

for the assumed arrow wing geometry. 

Numerical results at three spanwise stations are compared with exact 

values in table C.l. The results along the leading edge are compared in 

table C.2. From both tables, it can be seen that the present numerical 

method is quite accurate. 
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azC Table C.1 Comparison of Calculated a~ with Exact Results 

at Three Spanwise Stations 

T X X a+! w 
Calculated Exact 

.172570 .588089 .043620 -.135850 -.135850 

.7%3837 .16494o -.054444 -.054436 

1.092941 .356414 .023043 .023043 

1.448850 .577098 .036728 .367278 

1.781067 , 782997 -.021320 -.021320 

2.023794 .933434 -.105749 -.105749 

2.128961 .998613 -.153111 -.153111 

. 571157 1.749949 .043620 -.171606 -.171606 

1.851402 .164940 -.116446 -.116445 

2.011605 .356414 -.042382 -.042382 

2.196066 .577098 .017433 .017433 

2.368248 .782997 .042307 .042307 

2.494050 .933434 .037956 .037955 

2.548556 .998613 .029470 .029470 

.979746 2.940962 .043620 -.208260 -.208256 

2.945754 .164940 -.180003 -.179998 

2.953320 .356414 -. 109448 -.109446 

2.962032 .577098 -.002346 -.002347 

2.970163 .782997 .107531 .107529 

2.976105 .933434 .185266 .185260 

2.978679 .998613 .216633 .216628 
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II 

az 

TableC .2 Comparison of Calculated c with Exact Results 
ay 

Along the Leading Edge x=0 

Y 5 X 

.022115 .020254 -060761 

.086668 .079373 .238120 

.188429 -172570 -517709 

.319154 .292292 .876877 

.468253 .428843 1.286528 

-623647 .571157 1.713472 

.772746 .707708 2.123122 

.903471 .827430 2.482291 

1.005253 .920627 2.761880 

1.069785 .979746 2.939239 

azcl a 

Calculated Exact 

-.163188 -.163188 

-.166355 -.166355 

-.171348 -.171349 

-.177763 -.177764 

-.185079 -.185080 

-.192703 -.192706 

-.200019 -.200024 

-.206433 -.206444 

-.211427 -.211452 

-.214594 -.214698 
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Figure 1 Definition of Variables Defining a Nonplanar Wing Surface. 
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‘i 

Figure 2 A Tangent Vector to the Camber Surface Being 

Projected to the X-Z Plane. 

Figure 3 Unit Vectors Defined at the Leading Edge. 
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0 Measured Minimum Pressure Pofnts(ref.7) 

(a) cx = 10 deg. (b) a = 30 deg. 

Figure 4 Measured Minimum Pressure Points as a Function of 

Angle of Attack on A=1.147 Delta Wing with 

Conical Camber. 

a, deg. 

15 20 25 

’ ’ ’ 

Figure 5 Axial Force Coefficient of A=1.147 Delta Wing 

with Vortex Flap (ref. 8). 
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'o.rd3 r/s 

of Vortex 

.g Edge 

b 

Figure 6 Measured Variation of Circumferential Velocity 

in Four Quadrants (ref. 10) at Angle of Attack of 

14.9 deg. for A=l.O Delta Wing, 
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(b) 

Figure 7 Geometry and Flow 

Center Location. 

Field for Defining Vortex 

&ii,Zace(o) vz 

out 

~T+L.E~ 

cpV~l2 

Section A-A 

cc> 

Figure 8 Velocity Components along the Camber Surface 

with u 
tw = 0. 
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Ace=-2yxsina sin(++$,) 

Section A-A 

Vmsina 

Figure 9 Geometry Showing Effect of Local Dihedral on Lifting Pressure. 

LV ,cosa 
..--- )X 

Figure 10 Geometry Defining Some Unit Vectors. 
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(a) Tail A. 

Figure 11 Effect of Dihedral on the Aerodynamic Characteristics 

of V-tails at M=O. 
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Figure 11 Concluded. 
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Figure 12 Geometry for a Supersonic Cruise Configuration Defined in Reference 15. 

Dimensions in cm. (in.) 
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Figure 13 
Q, deg. 

Longitudinal Aerodynamic Characteristics of a Supersonic 
Configuration at M=0.165. 
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Figure 14 Effect of dzc/dy2 on the Predicted Aerodynamic Characteristics 

of A=1.147 Delta Wing with Conical Camber at M=O. 
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Figure 15 Effect of Vortex Lift Orientation on Predicted Aerodynamic 

Characteristics of A=1.147 Delta Wing with Conical Camber 

at M=O. 
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vortex force 

Figure 16 Vortex Locations on A=1.07 Delta Wing 

at ~1 = 12.29 deg. 
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Figure 17 Aerodynamic Characteristics of A=1.147 Conically 

Cambered Delta Wing at M=O. 
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Figure 18 Longitudinal Aerodynamic Characteristics of Squire's A=l*O 

Cambered Wing (No.7) at M=O. 
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Figure 19 Geometry of a 74'-Delta Wing with Leading- 

Edge Vortex Flap Defined in Reference 8. 
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Figure 20 Longitudinal Aerodynamic Characteristics of A= 

I.-~47 Delta Wing with a Leading-Edge Vortex 

Flap: 6f=30". M=0.2 
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Figure 21 Axial Force Coefficient due to Leading-Edge Vortex 

for the 74"-Delta Wing with Leading Edge Vortex Flap 

by Present Method. M=0.2. 
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Figure 22 Longitudinal Aerodynamic Characteristics of A=2.0 

Delta Wing at M=O.7 with Leading-Edge Flap Number 1 

Deflected 15". 
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Figure 23 Longitudinal Aerodynamic Characteristics of a Cropped 
Arrow Wing of A=1.383 and X=0.045 at M=O.6. 
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